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ABSTRACT

This paper presents a comparison of the statistics on the
measured modal parameters of a bridge structure to the expect-
ed changes in those parameters caused by damage. It is then de-
termined if the changes resulting from damage are statistically
significant. This paper considers the most commonly used
modal parameters for indication of damage: modal frequency,
mode shape, and mode shape curvature. The approach is divid-
ed into two steps: First, the relative uncertainties (arising from
random error sources) of the measured modal frequencies,
mode shapes, and mode shape curvatures are determined by
Monte Carlo analysis of the measured data. Based on these un-
certainties, 95% statistical confidence bounds are computed for
these parameters. The second step is the determination of the
measured change in these parameters resulting from structural
damage. Changes which are outside the 95% bounds are con-
sidered to be statistically significant. It is proposed that this sta-
tistical significance can be used to selectively filter which
modes are used for damage identification. The primary conclu-
sion of the paper is that the selection of the appropriate param-
eters to use in the damage identification algorithm must take
into account not only the sensitivity of the damage indicator to
the structural deterioration, but also the uncertainty inherent in
the measurement of the parameters used to compute the indica-
tor.

INTRODUCTION

Damage identification using changes in measured modal
parameters is a topic that has received considerable attention in
the literature in recent years. A review of the state of the art in
the field is presented in Ref. [1]. The majority of existing meth-
ods use the following three modal parameters as basic building
blocks for damage identification: modal frequency, mode
shape, and mode shape curvature. Frequency and mode shape
are used in flexibility analysis (see Toksoy and Aktan [2]) and
model correlation approaches (see Hemez and Farhat [3], Zim-

merman and Kaouk [4], and Doebling [5]). Mode shape curv
ture is used primarily in discretized strain energy methods (
Stubbs, et al. [6]).

Each of these basic parameters has pros and cons for
in damage identification: The modal frequency has the adv
tage of ease and accuracy of measurement, but is not spat
specific and is not very sensitive to damage. The mode sh
has the advantage of being spatially specific, but requires m
sensors to measure and is more mathematically involved to
tract from the data. The mode shape curvature offers spa
specificity along with high sensitivity to damage, but can b
subject to numerical estimation difficulties resulting from th
need for differentiation.

One characteristic of the basic modal damage indicat
that is often overlooked is the statistical uncertainty inherent
the measurements caused by random variation in the sig
This uncertainty describes the amount by which one would 
pect the estimated value to change from one measuremen
the next as a result of electrical noise, slight variations in test
conditions, environmental effects (such and temperature a
wind), etc. Once the uncertainty bounds for each of the ba
indicators has been defined, any change within that bound 
be classified as “statistically insignificant,” i.e. it can be attrib
uted to the random variations. Thus, the statistical uncertai
on the damage indicators must be defined so that the ana
can determine whether an observed change in the indicato
large enough to be indicative of damage, or whether it can
attributed to the natural variations in the measurements.

In this paper, modal measurements from the Alamo
Canyon Bridge are analyzed to determine the 95% statist
uncertainty bounds on the modal frequencies, mode sha
and mode shape curvatures. These uncertainty bounds
based on the propagation of standard values for the random
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the modal identification procedure to the modal parameters.

Changes in the modal frequencies, mode shapes, and
mode shape curvatures that are expected as a result of damage
are computed using a correlated finite element model (FEM).
These predicted changes are compared to the 95% confidence
bounds computed from the experimental data, to determine
which changes can be classified as statistically significant. A
comparison is made of the overall statistical significance of the
three indicators. The results indicate that although frequency is
not very sensitive to damage, it has such low uncertainty
bounds that it is a good indicator for the existence (not location)
of the damage case considered. Also, particular components of
the mode shape, and especially the mode shape curvature, can
be statistically significant indicators of the location damage.
However, the overall average values of the mode shape and
mode shape curvature changes are typically not statistically
significant.

EXPERIMENTAL TESTBED AND DATA 
ACQUISITION

The Alamosa Canyon Bridge has seven independent spans
with a common pier between successive spans. An elevation
view of the bridge is shown in Figure 1. The bridge is located
on a seldom-used frontage road parallel to Interstate 25 about
10 miles North of the town of Truth or Consequences, New
Mexico. Each span consists of a concrete deck supported by six
W30x116 steel girders. The roadway in each span is approxi-
mately 7.3 m (24 ft) wide and 15.2 (50 ft) long. Integrally at-
tached to the concrete deck is a concrete curb and concrete
guard rail. Inspection of the bridge showed that the upper flang-
es of the beams are imbedded in the concrete. Between adjacent

beams are four sets of cross braces equally spaced along
length of the span. The cross braces are channel sect
(C12x25). A cross section of the span at a location showing 
interior cross braces is shown in Figure 2. At the pier the bea
rest on rollers, and at the abutment the beams are bolted 
half-roller to approximate a pinned connection. These end c
ditions are shown in Figure 3.

The data acquisition system used in the vibration te
consisted of a Toshiba TECRA 700 laptop computer, fo
Hewlett Packard (HP) 35652A input modules that provid
power to the accelerometers and perform analog to digital c
version of the accelerometer signals, an HP 35651A signal p
cessing module that performs the needed fast Fourier transf
calculations, and a commercial data acquisition/signal analy
software package produced by HP. A 3500 watt GENERA
Model R-3500 XL AC generator was used to power this sy
tem. 

The data acquisition system was set up to measure accel-
eration and force time histories and to calculate FRFs, power
spectral densities (PSDs), cross-power spectra and coherence
functions. Sampling parameters were specified that calculated
the FRFs from a 16-s time window discretized with 2048 sam-
ples. The FRFs were calculated for a frequency range of 0 to 50
Hz at a frequency resolution of 0.0625 Hz. A Force window
was applied to the signal from the hammer’s force transducer
and exponential windows were applied to the signals from the

accelerometers. AC coupling was specified to minimize D
offsets.

A PCB model 086B50 impact sledge hammer was used
the impact excitation source. The hammer weighed appro
mately 53.4 N (12 lbs) and had a 7.6-cm-dia. (3-in-dia) ste
head. This hammer has a nominal sensitivity of 0.73 mV/lb a
a peak amplitude range of 5000 lbs. A Wilcoxon Resear
model 736T accelerometer was used to make the driving po

Figure 1. Elevation View of Alamosa Canyon Bridge

Figure 2. Cross-Section of Alamosa Canyon Bridge Span
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acceleration response measurement adjacent to the hammer im-
pact point. This accelerometer has a nominal sensitivity of 100
mV/g, a specified frequency range of 5 - 15,000 Hz, and a peak
amplitude range of 50 g. PCB model 336c integrated circuit pi-
ezoelectric accelerometers were used for the vibration mea-
surements. These accelerometers have a nominal sensitivity of
1 V/g, a specified frequency range of 1 - 2000 Hz, and an am-
plitude range of 4 g. More details regarding the instrumentation
can be found in Ref. [7].

A total of 31 acceleration measurements were made on the
concrete deck and on the girders below the bridge as shown in
Figure 4. Five accelerometers were spaced along the length of

each girder. Because of the limited number of data channels,
measurements were not made on the girders at the abutment or
at the pier. Two excitations points were located on the top of the
concrete deck. Point A was used as the primary excitation loca-
tion. Point B was used to perform a reciprocity check. The
force-input and acceleration-response time histories obtained
from each impact were subsequently transformed into the fre-
quency domain so that estimates of the PSDs, FRFs, and coher-
ence functions could be calculated. Thirty averages were
typically used for these estimates. With the sampling parame-
ters listed above and the overload reject specified, data acquisi-
tion for a specific test usually occurred over a time period of
approximately 30 - 45 minutes. All of the results in this paper

are from measurements made on span 1 of the bridge, whic
located at the far North end.

A total of 52 data sets were collected over the course of 
six days of testing. Reciprocity and linearity checks were co
ducted first. A series of modal tests was conducted over a
hour period (one test every 2 hours) to assess the chang
modal properties as a result of variations in ambient enviro
mental conditions, as discussed in Ref. [7]. A series of te
with various levels of attempted damage was also conduc
but the permitted alterations in the bridge did not cause a s
nificant change in the measured modal properties. Specifica
the nuts on the bolted connections that hold the channel-sec
cross members to the girders, as shown in Figure 5 were
moved. However the bolts could not be loosened sufficient
and no relative motion could be induced at the interface un
the loading of the modal excitation. For this reason, the dam
cases presented in this paper are results from simulated s
ness reduction using a correlated FEM. 

MODAL IDENTIFICATION PROCEDURE

The first step in the analysis of the data was the deter
nation of the approximate number of modes to be fit. This nu
ber was determined using the Multivariate Mode Indicat
Function (MIF) [8] and the Complex Mode Indicator Functio
(CMIF) [9]. The MIF is an indication of how close to purely
imaginary the response is at a particular frequency bin; thus 
quencies which correspond to a peak in the MIF can be in
preted as possible modal frequencies. The values 
normalized such that the MIF always falls between zero a
one. The CMIF is a measure of the maximum singular valu
of the FRF matrix at each frequency bin. The CMIF also pr
duces a peak at each modal frequency, but these peaks are
portional to the overall magnitude of the frequency response
that bin across all measured degrees of freedom (DOF). T
proportionality is advantageous because it allows the user to
a feel for the relative strengths of each mode. However, it h
the disadvantage that sometimes particularly strong modes
‘washout’ nearby peaks. In this analysis, the CMIF and M
were computed, and then zoomed to frequency bands of 10
at a time. Approximately 9 modes of significant strength we
located between 0 Hz and 30 Hz by inspection of the CMIF a
MIF, as shown in Figure 6.

Figure 3. End Conditions of Alamosa Canyon Bridge 
Span

Figure 4.  Accelerometer and Impact Locations
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The next step in the analysis was the application of ERA
[10] to identify the modal frequencies, modal damping ratios,
and mode shapes. The ERA procedure is based upon the forma-
tion of a Hankel matrix containing the measured discrete-time
impulse response data, computed using the inverse fast Fourier
transform of the measured FRFs. The shift in this matrix from
one time step to the next is then used to estimate a discrete-time
state space model for the structure. This data set contained 31
responses and 1 reference, and a Hankel matrix with 30 block
rows and 200 block columns was used.

The model resulting from the ERA analysis had 80 modes,
but it was known from examination of the MIF and CMIF that
the data contains only about 9 modes in the band of interest.
Thus it was necessary to apply some discrimination procedures
to select the modes that were physically meaningful. There are
three indicators developed specifically for use with ERA [11]:
Extended Modal Amplitude Coherence (EMAC), Modal Phase
Collinearity (MPC), and Consistent Mode Indicator (CMI),
which is the product of EMAC and MPC. EMAC is a measure
of how accurately a particular mode projects forward (in time)
onto the impulse response data. MPC is a measure of how col-
linear the phases of the components of a particular complex
mode are. If the phases are perfectly linear (i.e. either in phase
or 180 degrees out of phase with each other), this mode is ex-
actly proportionately damped, and can then be completely rep-
resented by a corresponding real mode shape. Thus, EMAC is

a temporal quality measure and MPC is a spatial quality m
sure. Typically, we start with values of EMAC = 0.7, MPC 
0.7, and CMI = 0.5, and then see if all of the modes of inter
(as determined by MIF and CMIF inspection) are preserved
the current study, all 9 modes of interest passed this criteria
these values of EMAC, MPC, and CMI were used as the cut
values.

The next step in the process was visual inspection of 
mode shapes. For a beam or plate-like structure, such as
Alamosa Canyon Bridge, the visual inspection of the mo
shapes is particularly useful, because the response shape
somewhat intuitive. The comparison of the measured mode
the FEM modes was useful as well, and a one-to-one co
spondence was found between the 9 measured modes and
the first 10 FEM modes. (One of the first 10 FEM modes w
bending in the plane of the deck. This mode was not measu
in this test because all of the sensors were perpendicular to
plane of the deck.)

The identified modal frequencies and modal damping r
tios from this analysis are shown in Table 1. The mode sha
identified in this analysis are shown in Figure 7. 

STATISTICS ON MEASURED MODAL 
PARAMETERS

Statistical uncertainty bounds on the measured frequen
response function magnitude and phase were computed f
the measured coherence functions, assuming that the er
were distributed in a Gaussian manner, according to the follo
ing formulas from Bendat and Piersol [12]:

Figure 6. MIF and CMIF from Alamosa Canyon Bridge 
Data
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Table 1. Identified Modal Parameters from 
Alamosa Canyon Bridge Test

Mode Number
Modal 

Frequency (Hz)

Modal 
Damping Ratio 

(%)

1 7.372 1.63%

2 8.043 1.84%

3 11.677 1.11%

4 20.191 0.57%

5 23.040 1.76%

6 25.448 1.92%

7 26.581 1.18%

8 27.637 2.04%

9 29.541 1.50%
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where  and  are the magnitude and phase an-
gle of the measured FRF, respectively,  is the coherence
function,  is the number of measurement averages, and

 is the value of 1 standard deviation (68% uncertainty
bound). These uncertainty bounds represent a statistical distri-
bution of the FRF based on a realistic level of random noise on
the measurement. Once the 1 standard deviation (68% uncer-
tainty) bounds were known, 2 standard deviation (95% uncer-
tainty) bounds were computed. Typical 95% uncertainty

bounds on the FRF magnitude and phase for this data set
shown in Figure 8. 

Statistical uncertainty bounds on the identified modal p
rameters (frequencies, damping ratios, and mode shapes) w
estimated using the uncertainty bounds on the FRFs via a M
te Carlo analysis [13]. The basic idea of a Monte Carlo analy
is the repeated simulation of random input data, in this case
FRF with estimated mean and standard deviation values, 
compilation of statistics on the output data, in this case the E
results. For this analysis, the procedure is summarized as:

1. Add Gaussian random noise to the FRFs using the no
standard deviations computed using Eq. (1). This addit
noise represents a realistic level of random variations
the measurements.

Figure 7. Identified Mode Shapes for Alamosa Canyon Bridge

Mode 1, Freq = 7.372 Hz Mode 2, Freq = 8.043 Hz Mode 3, Freq = 11.677 Hz

Mode 4, Freq = 20.191 Hz Mode 5, Freq = 23.040 Hz Mode 6, Freq = 25.448 Hz

Mode 7, Freq = 26.581 Hz Mode 8, Freq = 27.637 Hz Mode 9, Freq = 29.541 Hz
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2. Run the noisy FRF through the ERA identification proce-
dure and apply the modal discrimination using the previ-
ously computed parameters.

3. Compute the mean and standard deviation of each modal
frequency, damping ratio, and mode shape component
over the total number of runs.

4. Repeat steps 1, 2, and 3 until the means and standard
deviations calculated in step 3 converge.

For the current study, the convergence took about 100 runs.
Tracking the convergence determined the sufficient sample
size to provide significant confidence on the statistical esti-
mates. The 95% uncertainty bounds on the modal frequencies,
mode shapes, and mode shape curvatures resulting from ran-
dom disturbances and noise, as computed by the Monte Carlo
analysis, are presented in Table 2. It is observed from these re-
sults that the uncertainty bounds on the modal frequencies are
much smaller than on the mode shapes, with the mode shape
curvatures having the largest uncertainties. (The definition of

the “average” errors for mode shape and mode shape curva
are presented in the comparison section of the paper.)

FINITE ELEMENT MODEL

Because the Alamosa Canyon Bridge consists of sev
spans which are coupled only through the interaction of th
expansion joints and the bridge piers, they were treated as in
pendent so that only one span needed to be modeled. The F
of 1 span of the Alamosa Canyon Bridge consisted of 612 t
shell elements for the bridge deck and 300 linear beam e
ments for the girders, cross members, and curbs. The gu
rails were not included in the model. The full model had 99
nodes. The material and cross-sectional properties used in
model are shown in Table 3. The model was correlated with 

measured modal frequencies from span 1 (far North end of
bridge) to improve the overall accuracy of its dynamic r

Figure 8. Typical 95% Confidence Bounds on FRF 
Magnitude and Phase
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Table 2.  Uncertainty Bounds on Measured 
Parameters from Random Disturbances

Mode 
#

Error on 
Modal 
Freq

Avg. Error on 
Mode Shape

Avg. Error on 
Mode Shape 

Curvature

1 0.06% 1.68% 555.49%

2 0.73% 45.42% 5118.41%

3 0.06% 1.74% 6.85%

4 0.24% 23.77% 12.98%

5 0.50% 157.83% 637.66%

6 0.06% 5.58% 36.97%

7 0.09% 3.63% 33.61%

8 0.11% 5.50% 9.54%

9 0.19% 156.16% 36.57%

Table 3. FEM Material and Cross-Sectional 
Properties

Name Value

Modulus of Elasticity, Steel

Density, Steel

Modulus of Elasticity, Con-
crete

Density, Concrete

Cross Section, Girder Wide Flange, W30X116

Cross Section, Cross Mem-
bers

Channel, C12X25

Cross Section, Curb Rectangle, 14 x 24

30 106×  psi

7.32 10 4–×  lbfs2 in4⁄

3.012 106×  psi

1.903 104–×  lbfs2 in4⁄
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sponse. The material properties shown in Table 3 are the post-
correlation values.

The boundary conditions of the bridge were originally in-
tended to be pinned-roller connections, as shown in Figure 3.
The original model contained simple pin-rollers to simulate
these end conditions. However, it was found that adding linear
rotational springs to the pin connections improved the accuracy
of the model.

Simulation of Damage

The damage case that was simulated for the Alamosa Can-
yon Bridge was the complete failure of the bolted connection of
two cross members at an interior girder. This connection is
shown in Figure 5. The damage was simulated by 99% reduc-
tion in the modulus of elasticity of the cross members on either
side of the connection. Thus, their ability to carry loads is lost,
but their mass is still contained in the model, as would be the
case in an actual connection failure. The changes in the FEM
modal frequencies, mode shapes, and mode shape curvatures as
a result of damage are presented in Table 4. It is observed in this

table that the relative change of mode shapes is larger than that
of frequencies, and the relative change of mode shape curva-
tures are typically the largest.

COMPARISON OF STATISTICS TO 
PREDICTED DAMAGE EFFECTS

A comparison of the estimated 95% confidence bounds
and the predicted changes as a result of damage for the modal
frequencies are shown in Figure 9. The modal frequencies of
modes 3, 4, 7, 8, and 9 undergo a change that is significantly

larger than the corresponding 95% confidence bounds. The
ative magnitudes of the changes indicate that the freque
changes of these modes could be used with confidence 
damage identification analysis. It should be noted from the
axis scale of Figure 9 that the overall changes in frequency 
result of damage are quite small (< 1.2%), but as a conseque
of the extremely low uncertainty bounds on the modal freque
cies (many less than 0.2%), these small changes can be co
ered to be statistically significant.

One method for comparison of the confidence bounds 
the mode shape components to the predicted change as a r
of damage is a direct, component-by-component comparis
Such a comparison for modes 3 and 7 is shown in Figure 
These plots show the mean values of the undamaged m
shape components in a solid line (with 95% confidence boun
at the measurement locations), with the predicted mode sh
after damage represented by a dashed line. These mode s
components represent a “slice” of each of these mode sha
taken along one girder of the bridge. This slice of mode sha
3 contains 3 components that have a predicted change f
damage that is greater than the 95% confidence bounds. T
the change in these 3 components can be used with confide
in a damage identification algorithm. However, none of th
components of this slice of mode shape 7 have a change th
greater than the 95% bound, so these components of this m
shape have an insignificant change as a result of damage,
should not be used in a damage identification analysis.

An “average” of the component-by-component mod
shape comparison shown above was computed to give an o
all measure of the mode shape change and corresponding 
confidence bound for each mode shape. The average m
shape change for mode j as a result of damage, , was de
fined as

Table 4. Changes in FEM Modal Parameters 
Resulting From Damage

Mode 
Number

Change in 
Modal Freq

Avg. 
Change in 

Mode 
Shape

Avg. 
Change in 

Mode 
Shape 

Curvature

1 0.00% 0.03% 4.63%

2 0.02% 0.16% 2.35%

3 0.27% 0.87% 5.83%

4 1.11% 3.87% 3.49%

5 0.00% 0.07% 8.13%

6 0.03% 0.25% 1.78%

7 0.24% 1.49% 24.37%

8 0.76% 5.36% 6.49%

9 1.19% 20.65% 4.75%

Figure 9. Comparison of Modal Frequency 95% 
Confidence Bounds to Changes Predicted as a 

Result of Damage
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where  is the j th mode shape measured at the ith DOF, and
the superscripts u and d refer to modes from the undamaged
and damaged structure, respectively. A corresponding average
95% confidence bound for the jth mode, , was defined as

(3)

where  and  are the standard deviation and mean
of the jth identified mode shape at the ith DOF, .

A comparison of the average 95% confidence bounds and
the predicted changes as a result of damage for the mode shapes
are shown (on a semilog scale) in Figure 11. Although many of
the mode shapes undergo a significant (> 5%) average change,
none of the mode shapes undergo an average change over all

degrees of freedom that is larger than the 95% confiden
bounds due to random variations in the measurements. Mod
is the only mode whose average change is near statistical 
nificance. This figure only indicates the average change over
of the mode shape components, however, when in fact sev
of the mode shapes undergo a large localized change at pa
ular DOF. The total number of DOF where the mode sha
components undergo a change equal to or greater than the 
confidence bounds is shown in Table 5. Mode 8 has the co

ponent with the largest change. It is interesting to note that
though mode shapes 3, 7, and 8 have average changes th
less than the average 95% uncertainty bound, they have 9
and 6 individual components (out of 30 total) that undergo
significant change, respectively.

Figure 10. Comparison of Modes 3 and 7 Confidence 
Bounds and Predicted Change After Damage

∆φj

φi j
d φi j

u–( )
i

∑

φi j
u

i

∑
------------------------------=

φi j

σj

σ j

2 σ φi j
ˆ( )

j

∑

µ φi j
ˆ( )

i

∑
------------------------=

σ φi j
ˆ( ) µ φi j

ˆ( )
φi j
ˆ

Figure 11. Comparison of Average Mode Shape 
Component 95% Confidence Bounds to Changes 

Predicted as a Result of Damage

Table 5. Number of DOF for Each Mode Shape That 
Undergo Change Resulting from Damage 
>=95% Confidence Bounds.

Mode Number

Number of 
Mode Shape 
Components 

with Change > 
95% Bound

Maximum ratio 
of component 
change to 95% 

Bound

1 0 0.069

2 0 0.016

3 9 2.521

4 0 0.982

5 0 0.002

6 1 1.048

7 5 2.955

8 6 5.431

9 1 1.361
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The statistical significance of changes to the mode shape
curvature can be evaluated in a manner analogous to the analy-
sis of the mode shapes. The most basic method is a direct, com-
ponent-by-component comparison, as shown in Figure 12 for

modes 3 and 7. In this case, mode 3 shows only slight changes
in some of its curvature components, whereas mode 7 shows a
large change in two of its curvature components. It should be
noted that the curvatures shown in Figure 12 are the curvatures
in the x-direction of the sensor configuration, which is parallel
to the cross-members and perpendicular to the girders. There-
fore, the curvatures of Figure 12 are not the second derivatives
of the mode shapes shown in Figure 10 along the y-axis, but
rather along the transverse direction.

Indicators that show the average uncertainty and change in
curvature after damage were defined analogous to those de-
fined for mode shapes in Eq. (2) and Eq. (3). A comparison of
the average 95% confidence bounds and the predicted changes
as a result of damage for the mode shape curvature components
for each mode are shown in Figure 13. Although many of the
mode shape curvatures undergo a significant (> 5%) average
change, none of the mode shape curvatures undergoes an aver-
age change over all degrees of freedom that is larger than the
95% confidence bounds due to random variations in the mea-
surements. Modes 3 and 8 are the only modes whose average

curvature change is near statistical significance. This figu
only indicates the average change over all of the mode sh
curvature components, however, when in fact several of 
mode shapes undergo a large localized curvature change at
ticular DOF. The total number of DOF where the mode sha
components undergo a change equal to or greater than the 
confidence bounds is shown in Table 6. Mode 7 has the indiv

ual component with the largest curvature change. It is intere
ing to note that although mode shape curvatures 3, 6, 7, 8 h
average changes that are less than the average 95% uncer
bound, they have 7, 3, 9 and 8 individual components that 
dergo a significant change, respectively. The bottom line on 
statistical analysis of the mode shape curvature changes is
over all their components, they generally do not exhibit

Figure 12. Comparison of Modes 3 and 7 Curvature 
Confidence Bounds and Predicted Change After 

Damage

Figure 13. Comparison of Average Mode Shape 
Curvature Component 95% Confidence Bounds to 

Changes Predicted as a Result of Damage

Table 6. Number of DOF for Each Mode Shape 
Curvature That Undergo Change 
Resulting from Damage >=95% 
Confidence Bounds.

Mode Number

Number of 
Mode Curv. 

Components 
with Change > 

95% Bound

Maximum ratio 
of component 
change to 95% 

Bound

1 0 0.207

2 0 0.011

3 7 2.552

4 0 0.858

5 0 0.866

6 3 2.124

7 9 9.929

8 8 5.248

9 0 0.901
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change larger than the 95% uncertainty bounds. However, indi-
vidual components of certain mode shape curvatures exhibit
changes that are much larger than the 95% uncertainty bounds,
as shown for mode 7 in Figure 12. Therefore, individual com-
ponents of the mode shape curvatures can be used for damage
identification, but the analyst should compare the measured
changes in curvature to the computed 95% uncertainty bounds
to determine whether the observed changes in curvature are sta-
tistically significant.

CONCLUSION

Changes in basic damage indicators as a result of simulat-
ed damage were compared to variations in the indicators result-
ing from random variability in the measurements. The results
demonstrate that modal frequency undergoes a statistically sig-
nificant change as a result of the simulated damage, as do indi-
vidual components of the mode shape and mode shape
curvature. The average mode shape and average mode shape
curvature undergo large changes in an absolute sense, but they
also have much larger levels of uncertainty resulting from ran-
dom variations in the measurements. The statistical signifi-
cance of changes in the modal parameters could be used as
criteria for “filtering” the modal parameters to perform a dam-
age analysis in a selective manner. For example, perhaps only
particular components of certain mode shapes should be used
in damage analysis. The bottom line is that the statistical signif-
icance of changes in modal parameters, and not just the changes
themselves, must be taken into account when using modal test
results for damage identification. Future work will explore the
use of these statistical confidence bounds for the enhancement
of damage identification algorithms.
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